Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
Nat Cell Biol ; 26(4): 645-659, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38589531

RESUMO

The cellular lipidome comprises thousands of unique lipid species. Here, using mass spectrometry-based targeted lipidomics, we characterize the lipid landscape of human and mouse immune cells ( www.cellularlipidatlas.com ). Using this resource, we show that immune cells have unique lipidomic signatures and that processes such as activation, maturation and development impact immune cell lipid composition. To demonstrate the potential of this resource to provide insights into immune cell biology, we determine how a cell-specific lipid trait-differences in the abundance of polyunsaturated fatty acid-containing glycerophospholipids (PUFA-PLs)-influences immune cell biology. First, we show that differences in PUFA-PL content underpin the differential susceptibility of immune cells to ferroptosis. Second, we show that low PUFA-PL content promotes resistance to ferroptosis in activated neutrophils. In summary, we show that the lipid landscape is a defining feature of immune cell identity and that cell-specific lipid phenotypes underpin aspects of immune cell physiology.


Assuntos
Ferroptose , Humanos , Animais , Camundongos , Ácidos Graxos Insaturados
2.
Diabetes Obes Metab ; 26(5): 1731-1745, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38351663

RESUMO

AIM: Acyl-coenzyme A dehydrogenase family member 10 (ACAD10) is a mitochondrial protein purported to be involved in the fatty acid oxidation pathway. Metformin is the most prescribed therapy for type 2 diabetes; however, its precise mechanisms of action(s) are still being uncovered. Upregulation of ACAD10 is a requirement for metformin's ability to inhibit growth in cancer cells and extend lifespan in Caenorhabditis elegans. However, it is unknown whether ACAD10 plays a role in metformin's metabolic actions. MATERIALS AND METHODS: We assessed the role for ACAD10 on whole-body metabolism and metformin action by generating ACAD10KO mice on a C57BL/6J background via CRISPR-Cas9 technology. In-depth metabolic phenotyping was conducted in both sexes on a normal chow and high fat-high sucrose diet. RESULTS: Compared with wildtype mice, we detected no difference in body composition, energy expenditure or glucose tolerance in male or female ACAD10KO mice, on a chow diet or high-fat, high-sucrose diet (p ≥ .05). Hepatic mitochondrial function and insulin signalling was not different between genotypes under basal or insulin-stimulated conditions (p ≥ .05). Glucose excursions following acute administration of metformin before a glucose tolerance test were not different between genotypes nor was body composition or energy expenditure altered after 4 weeks of daily metformin treatment (p ≥ .05). Despite the lack of a metabolic phenotype, liver lipidomic analysis suggests ACAD10 depletion influences the abundance of specific ceramide species containing very long chain fatty acids, while metformin treatment altered clusters of cholesterol ester, plasmalogen, phosphatidylcholine and ceramide species. CONCLUSIONS: Loss of ACAD10 does not alter whole-body metabolism or impact the acute or chronic metabolic actions of metformin in this model.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Masculino , Feminino , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Camundongos Endogâmicos C57BL , Metformina/farmacologia , Glucose/metabolismo , Insulina , Ceramidas , Sacarose , Dieta Hiperlipídica/efeitos adversos
3.
Nat Commun ; 15(1): 1540, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378775

RESUMO

Recent advancements in plasma lipidomic profiling methodology have significantly increased specificity and accuracy of lipid measurements. This evolution, driven by improved chromatographic and mass spectrometric resolution of newer platforms, has made it challenging to align datasets created at different times, or on different platforms. Here we present a framework for harmonising such plasma lipidomic datasets with different levels of granularity in their lipid measurements. Our method utilises elastic-net prediction models, constructed from high-resolution lipidomics reference datasets, to predict unmeasured lipid species in lower-resolution studies. The approach involves (1) constructing composite lipid measures in the reference dataset that map to less resolved lipids in the target dataset, (2) addressing discrepancies between aligned lipid species, (3) generating prediction models, (4) assessing their transferability into the targe dataset, and (5) evaluating their prediction accuracy. To demonstrate our approach, we used the AusDiab population-based cohort (747 lipid species) as the reference to impute unmeasured lipid species into the LIPID study (342 lipid species). Furthermore, we compared measured and imputed lipids in terms of parameter estimation and predictive performance, and validated imputations in an independent study. Our method for harmonising plasma lipidomic datasets will facilitate model validation and data integration efforts.


Assuntos
Lipidômica , Plasma , Humanos , Espectrometria de Massas , Lipídeos
4.
Prostate Cancer Prostatic Dis ; 27(1): 136-143, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37147359

RESUMO

BACKGROUND: Using comprehensive plasma lipidomic profiling from men with metastatic castration-resistant prostate cancer (mCRPC), we have previously identified a poor-prognostic lipid profile associated with shorter overall survival (OS). In order to translate this biomarker into the clinic, these men must be identifiable via a clinically accessible, regulatory-compliant assay. METHODS: A single regulatory-compliant liquid chromatography-mass spectrometry assay of candidate lipids was developed and tested on a mCRPC Discovery cohort of 105 men. Various risk-score Cox regression prognostic models of OS were built using the Discovery cohort. The model with the highest concordance index (PCPro) was chosen for validation and tested on an independent Validation cohort of 183 men. RESULTS: PCPro, the lipid biomarker, contains Cer(d18:1/18:0), Cer(d18:1/24:0), Cer(d18:1/24:1), triglycerides and total cholesterol. Within the Discovery and Validation cohorts, men who were PCPro positive had significantly shorter OS compared to those who were PCPro negative (Discovery: median OS 12.0 months vs 24.2 months, hazard ratio (HR) 3.75 [95% confidence interval (CI) 2.29-6.15], p < 0.001, Validation: median OS 13.0 months vs 25.7 months, HR = 2.13 [95% CI 1.46-3.12], p < 0.001). CONCLUSIONS: We have developed PCPro, a lipid biomarker assay capable of prospectively identifying men with mCRPC with a poor prognosis. Prospective clinical trials are required to determine if men who are PCPro positive will benefit from therapeutic agents targeting lipid metabolism.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/patologia , Estudos Prospectivos , Biomarcadores , Prognóstico , Lipídeos
5.
J Lipid Res ; 65(2): 100494, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38160756

RESUMO

HDL particles vary in lipidome and proteome, which dictate their individual physicochemical properties, metabolism, and biological activities. HDL dysmetabolism in nondiabetic hypertriglyceridemia (HTG) involves subnormal HDL-cholesterol and apoAI levels. Metabolic anomalies may impact the qualitative features of both the HDL lipidome and proteome. Whether particle content of bioactive lipids and proteins may differentiate HDL subclasses (HDL2b, 2a, 3a, 3b, and 3c) in HTG is unknown. Moreover, little is known of the effect of statin treatment on the proteolipidome of hypertriglyceridemic HDL and its subclasses. Nondiabetic, obese, HTG males (n = 12) received pitavastatin calcium (4 mg/day) for 180 days in a single-phase, unblinded study. ApoB-containing lipoproteins were normalized poststatin. Individual proteolipidomes of density-defined HDL subclasses were characterized prestatin and poststatin. At baseline, dense HDL3c was distinguished by marked protein diversity and peak abundance of surface lysophospholipids, amphipathic diacylglycerol and dihydroceramide, and core cholesteryl ester and triacylglycerol, (normalized to mol phosphatidylcholine), whereas light HDL2b showed peak abundance of free cholesterol, sphingomyelin, glycosphingolipids (monohexosylceramide, dihexosylceramide, trihexosylceramide, and anionic GM3), thereby arguing for differential lipid transport and metabolism between subclasses. Poststatin, bioactive lysophospholipid (lysophosphatidylcholine, lysoalkylphosphatidylcholine, lysophosphatidylethanolamine, and lysophosphatidylinositol) cargo was preferentially depleted in HDL3c. By contrast, baseline lipidomic profiles of ceramide, dihydroceramide and related glycosphingolipids, and GM3/phosphatidylcholine were maintained across particle subclasses. All subclasses were depleted in triacylglycerol and diacylglycerol/phosphatidylcholine. The abundance of apolipoproteins CI, CII, CIV, and M diminished in the HDL proteome. Statin treatment principally impacts metabolic remodeling of the abnormal lipidome of HDL particle subclasses in nondiabetic HTG, with lesser effects on the proteome.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Hiperlipidemias , Hipertrigliceridemia , Quinolinas , Masculino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Proteoma , Diglicerídeos , Lipidômica , Ceramidas , Colesterol/metabolismo , Hipertrigliceridemia/tratamento farmacológico , HDL-Colesterol , Triglicerídeos , Fosfatidilcolinas
6.
Cell Death Dis ; 14(12): 787, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040704

RESUMO

Lipotoxicity, the accumulation of lipids in non-adipose tissues, alters the metabolic transcriptome and mitochondrial metabolism in skeletal muscle. The mechanisms involved remain poorly understood. Here we show that lipotoxicity increased histone deacetylase 4 (HDAC4) and histone deacetylase 5 (HDAC5), which reduced the expression of metabolic genes and oxidative metabolism in skeletal muscle, resulting in increased non-oxidative glucose metabolism. This metabolic reprogramming was also associated with impaired apoptosis and ferroptosis responses, and preserved muscle cell viability in response to lipotoxicity. Mechanistically, increased HDAC4 and 5 decreased acetylation of p53 at K120, a modification required for transcriptional activation of apoptosis. Redox drivers of ferroptosis derived from oxidative metabolism were also reduced. The relevance of this pathway was demonstrated by overexpression of loss-of-function HDAC4 and HDAC5 mutants in skeletal muscle of obese db/db mice, which enhanced oxidative metabolic capacity, increased apoptosis and ferroptosis and reduced muscle mass. This study identifies HDAC4 and HDAC5 as repressors of skeletal muscle oxidative metabolism, which is linked to inhibition of cell death pathways and preservation of muscle integrity in response to lipotoxicity.


Assuntos
Histona Desacetilases , Células Musculares , Camundongos , Animais , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Processamento de Proteína Pós-Traducional , Morte Celular
7.
medRxiv ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38076824

RESUMO

Alzheimer's disease (AD) is influenced by a variety of modifiable risk factors, including a person's dietary habits. While the ketogenic diet (KD) holds promise in reducing metabolic risks and potentially affecting AD progression, only a few studies have explored KD's metabolic impact, especially on blood and cerebrospinal fluid (CSF). Our study involved participants at risk for AD, either cognitively normal or with mild cognitive impairment. The participants consumed both a modified Mediterranean-ketogenic diet (MMKD) and the American Heart Association diet (AHAD) for 6 weeks each, separated by a 6-week washout period. We employed nuclear magnetic resonance (NMR)-based metabolomics to profile serum and CSF and metagenomics profiling on fecal samples. While the AHAD induced no notable metabolic changes, MMKD led to significant alterations in both serum and CSF. These changes included improved modifiable risk factors, like increased HDL-C and reduced BMI, reversed serum metabolic disturbances linked to AD such as a microbiome-mediated increase in valine levels, and a reduction in systemic inflammation. Additionally, the MMKD was linked to increased amino acid levels in the CSF, a breakdown of branched-chain amino acids (BCAAs), and decreased valine levels. Importantly, we observed a strong correlation between metabolic changes in the CSF and serum, suggesting a systemic regulation of metabolism. Our findings highlight that MMKD can improve AD-related risk factors, reverse some metabolic disturbances associated with AD, and align metabolic changes across the blood-CSF barrier.

8.
Circulation ; 148(22): 1827-1845, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37902008

RESUMO

Cardiometabolic risk is increasing in prevalence across the life span with disproportionate ramifications for youth at socioeconomic disadvantage. Established risk factors and associated disease progression are harder to reverse as they become entrenched over time; if current trends are unchecked, the consequences for individual and societal wellness will become untenable. Interrelated root causes of ectopic adiposity and insulin resistance are understood but identified late in the trajectory of systemic metabolic dysregulation when traditional cardiometabolic risk factors cross current diagnostic thresholds of disease. Thus, children at cardiometabolic risk are often exposed to suboptimal metabolism over years before they present with clinical symptoms, at which point life-long reliance on pharmacotherapy may only mitigate but not reverse the risk. Leading-edge indicators are needed to detect the earliest departure from healthy metabolism, so that targeted, primordial, and primary prevention of cardiometabolic risk is possible. Better understanding of biomarkers that reflect the earliest transitions to dysmetabolism, beginning in utero, ideally biomarkers that are also mechanistic/causal and modifiable, is critically needed. This scientific statement explores emerging biomarkers of cardiometabolic risk across rapidly evolving and interrelated "omic" fields of research (the epigenome, microbiome, metabolome, lipidome, and inflammasome). Connections in each domain to mitochondrial function are identified that may mediate the favorable responses of each of the omic biomarkers featured to a heart-healthy lifestyle, notably to nutritional interventions. Fuller implementation of evidence-based nutrition must address environmental and socioeconomic disparities that can either facilitate or impede response to therapy.


Assuntos
American Heart Association , Doenças Cardiovasculares , Criança , Adolescente , Humanos , Fatores de Risco , Obesidade/complicações , Biomarcadores , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle
9.
Nat Commun ; 14(1): 6280, 2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805498

RESUMO

Obesity is a risk factor for type 2 diabetes and cardiovascular disease. However, a substantial proportion of patients with these conditions have a seemingly normal body mass index (BMI). Conversely, not all obese individuals present with metabolic disorders giving rise to the concept of "metabolically healthy obese". We use lipidomic-based models for BMI to calculate a metabolic BMI score (mBMI) as a measure of metabolic dysregulation associated with obesity. Using the difference between mBMI and BMI (mBMIΔ), we identify individuals with a similar BMI but differing in their metabolic health and disease risk profiles. Exercise and diet associate with mBMIΔ suggesting the ability to modify mBMI with lifestyle intervention. Our findings show that, the mBMI score captures information on metabolic dysregulation that is independent of the measured BMI and so provides an opportunity to assess metabolic health to identify "at risk" individuals for targeted intervention and monitoring.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Síndrome Metabólica , Humanos , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Índice de Massa Corporal , Obesidade/complicações , Obesidade/epidemiologia , Obesidade/metabolismo , Fatores de Risco , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/complicações , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/complicações
10.
EBioMedicine ; 97: 104820, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37806288

RESUMO

BACKGROUND: Deep learning has shown potential in various scientific domains but faces challenges when applied to complex, high-dimensional multi-omics data. Alzheimer's Disease (AD) is a neurodegenerative disorder that lacks targeted therapeutic options. This study introduces the Circular-Sliding Window Association Test (c-SWAT) to improve the classification accuracy in predicting AD using serum-based metabolomics data, specifically lipidomics. METHODS: The c-SWAT methodology builds upon the existing Sliding Window Association Test (SWAT) and utilizes a three-step approach: feature correlation analysis, feature selection, and classification. Data from 997 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) served as the basis for model training and validation. Feature correlations were analyzed using Weighted Gene Co-expression Network Analysis (WGCNA), and Convolutional Neural Networks (CNN) were employed for feature selection. Random Forest was used for the final classification. FINDINGS: The application of c-SWAT resulted in a classification accuracy of up to 80.8% and an AUC of 0.808 for distinguishing AD from cognitively normal older adults. This marks a 9.4% improvement in accuracy and a 0.169 increase in AUC compared to methods without c-SWAT. These results were statistically significant, with a p-value of 1.04 × 10ˆ-4. The approach also identified key lipids associated with AD, such as Cer(d16:1/22:0) and PI(37:6). INTERPRETATION: Our results indicate that c-SWAT is effective in improving classification accuracy and in identifying potential lipid biomarkers for AD. These identified lipids offer new avenues for understanding AD and warrant further investigation. FUNDING: The specific funding of this article is provided in the acknowledgements section.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Aprendizado Profundo , Humanos , Idoso , Imageamento por Ressonância Magnética/métodos , Doença de Alzheimer/diagnóstico , Neuroimagem/métodos , Metaboloma , Lipídeos
11.
J Am Coll Cardiol ; 82(13): 1343-1359, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37730292

RESUMO

Reducing the incidence and prevalence of standard modifiable cardiovascular risk factors (SMuRFs) is critical to tackling the global burden of coronary artery disease (CAD). However, a substantial number of individuals develop coronary atherosclerosis despite no SMuRFs. SMuRFless patients presenting with myocardial infarction have been observed to have an unexpected higher early mortality compared to their counterparts with at least 1 SMuRF. Evidence for optimal management of these patients is lacking. We assembled an international, multidisciplinary team to develop an evidence-based clinical pathway for SMuRFless CAD patients. A modified Delphi method was applied. The resulting pathway confirms underlying atherosclerosis and true SMuRFless status, ensures evidence-based secondary prevention, and considers additional tests and interventions for less typical contributors. This dedicated pathway for a previously overlooked CAD population, with an accompanying registry, aims to improve outcomes through enhanced adherence to evidence-based secondary prevention and additional diagnosis of modifiable risk factors observed.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Infarto do Miocárdio , Humanos , Doença da Artéria Coronariana/epidemiologia , Procedimentos Clínicos , Fatores de Risco de Doenças Cardíacas
12.
Front Nutr ; 10: 1227340, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37712002

RESUMO

Background: Breastfed infants have lower disease risk compared to formula-fed infants, however, the mechanisms behind this protection are unknown. Human milk has a complex lipidome which may have many critical roles in health and disease risk. However, human milk lipidomics is challenging, and research is still required to fully understand the lipidome and to interpret and translate findings. This study aimed to address key human milk lipidome knowledge gaps and discuss possible implications for early life health. Methods: Human milk samples from two birth cohorts, the Barwon Infant Study (n = 312) and University of Western Australia birth cohort (n = 342), were analysed using four liquid chromatography-mass spectrometry (LC-MS) methods (lipidome, triacylglycerol, total fatty acid, alkylglycerol). Bovine, goat, and soy-based infant formula, and bovine and goat milk were analysed for comparison. Composition was explored as concentrations, relative abundance, and infant lipid intake. Statistical analyses included principal component analysis, mixed effects modelling, and correlation, with false discovery rate correction, to explore human milk lipidome longitudinal trends and inter and intra-individual variation, differences between sample types, lipid intakes, and correlations between infant plasma and human milk lipids. Results: Lipidomics analysis identified 979 lipids. The human milk lipidome was distinct from that of infant formula and animal milk. Ether lipids were of particular interest, as they were significantly higher, in concentration and relative abundance, in human milk than in formula and animal milk, if present in the latter samples at all. Many ether lipids were highest in colostrum, and some changed significantly through lactation. Significant correlations were identified between human milk and infant circulating lipids (40% of which were ether lipids), and specific ether lipid intake by exclusively breastfed infants was 200-fold higher than that of an exclusively formula-fed infant. Conclusion: There are marked differences between the lipidomes of human milk, infant formula, and animal milk, with notable distinctions between ether lipids that are reflected in the infant plasma lipidome. These findings have potential implications for early life health, and may reveal why breast and formula-fed infants are not afforded the same protections. Comprehensive lipidomics studies with outcomes are required to understand the impacts on infant health and tailor translation.

13.
Sci Adv ; 9(37): eadh0831, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703359

RESUMO

The incidence of hepatocellular carcinoma (HCC) is rapidly rising largely because of increased obesity leading to nonalcoholic steatohepatitis (NASH), a known HCC risk factor. There are no approved treatments to treat NASH. Here, we first used single-nucleus RNA sequencing to characterize a mouse model that mimics human NASH-driven HCC, the MUP-uPA mouse fed a high-fat diet. Activation of endoplasmic reticulum (ER) stress and inflammation was observed in a subset of hepatocytes that was enriched in mice that progress to HCC. We next treated MUP-uPA mice with the ER stress inhibitor BGP-15 and soluble gp130Fc, a drug that blocks inflammation by preventing interleukin-6 trans-signaling. Both drugs have progressed to phase 2/3 human clinical trials for other indications. We show that this combined therapy reversed NASH and reduced NASH-driven HCC. Our data suggest that these drugs could provide a potential therapy for NASH progression to HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/prevenção & controle , Hepatócitos , Inflamação/tratamento farmacológico
14.
Gastroenterology ; 165(5): 1136-1150, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37541526

RESUMO

BACKGROUND & AIMS: Cancers of the alimentary tract, including esophageal adenocarcinomas, colorectal cancers, and cancers of the gastric cardia, are common comorbidities of obesity. Prolonged, excessive delivery of macronutrients to the cells lining the gut can increase one's risk for these cancers by inducing imbalances in the rate of intestinal stem cell proliferation vs differentiation, which can produce polyps and other aberrant growths. We investigated whether ceramides, which are sphingolipids that serve as a signal of nutritional excess, alter stem cell behaviors to influence cancer risk. METHODS: We profiled sphingolipids and sphingolipid-synthesizing enzymes in human adenomas and tumors. Thereafter, we manipulated expression of sphingolipid-producing enzymes, including serine palmitoyltransferase (SPT), in intestinal progenitors of mice, cultured organoids, and Drosophila to discern whether sphingolipids altered stem cell proliferation and metabolism. RESULTS: SPT, which diverts dietary fatty acids and amino acids into the biosynthetic pathway that produces ceramides and other sphingolipids, is a critical modulator of intestinal stem cell homeostasis. SPT and other enzymes in the sphingolipid biosynthesis pathway are up-regulated in human intestinal adenomas. They produce ceramides, which serve as prostemness signals that stimulate peroxisome-proliferator activated receptor-α and induce fatty acid binding protein-1. These actions lead to increased lipid utilization and enhanced proliferation of intestinal progenitors. CONCLUSIONS: Ceramides serve as critical links between dietary macronutrients, epithelial regeneration, and cancer risk.


Assuntos
Adenoma , Ceramidas , Humanos , Animais , Camundongos , Ceramidas/metabolismo , Ácidos Graxos , Esfingolipídeos/metabolismo , Serina C-Palmitoiltransferase/metabolismo
15.
Eur J Nutr ; 62(8): 3369-3381, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37646831

RESUMO

PURPOSE: To assess the relationship of early pregnancy maternal diet quality (DQ) with maternal plasma lipids and indicators of cardiometabolic health, including blood pressure (BP), gestational diabetes mellitus (GDM) and gestational weight gain (GWG). METHODS: Women (n = 215) aged 18-40 years with singleton pregnancies were recruited at 10-20 weeks gestation. Diet quality was assessed by the Dietary Guideline Index, calculated at early ([mean ± SD]) (15 ± 3 weeks) and late (35 ± 2 weeks) pregnancy. Lipidomic analysis was performed, and 698 species across 37 lipid classes were measured from plasma blood samples collected at early (15 ± 3 weeks) and mid (27 ± 3 weeks)-pregnancy. Clinical measures (BP, GDM diagnosis, weight) and blood samples were collected across pregnancy. Multiple linear and logistic regression models assessed associations of early pregnancy DQ with plasma lipids at early and mid-pregnancy, BP at three antenatal visits, GDM diagnosis and total GWG. RESULTS: Maternal DQ scores ([mean ± SD]) decreased significantly from early (70.7 ± 11.4) to late pregnancy (66.5 ± 12.6) (p < 0.0005). At a false discovery rate of 0.2, early pregnancy DQ was significantly associated with 13 plasma lipids at mid-pregnancy, including negative associations with six triglycerides (TGs); TG(54:0)[NL-18:0] (neutral loss), TG(50:1)[NL-14:0], TG(48:0)[NL-18:0], TG(52:1)[NL-18:0], TG(54:1)[NL-18:1], TG(50:0)[NL-18:0]. No statistically significant associations were found between early pregnancy DQ and BP, GDM or GWG. CONCLUSION: Maternal diet did not adhere to Australian Dietary Guidelines. Diet quality was inversely associated with multiple plasma TGs. This study provides novel insights into the relationship between DQ, lipid biomarkers and cardiometabolic health during pregnancy.


Assuntos
Doenças Cardiovasculares , Diabetes Gestacional , Gravidez , Feminino , Humanos , Austrália , Triglicerídeos , Dieta
16.
Cell Rep ; 42(8): 112994, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37611586

RESUMO

SORL1 is implicated in the pathogenesis of Alzheimer's disease (AD) through genetic studies. To interrogate the roles of SORL1 in human brain cells, SORL1-null induced pluripotent stem cells (iPSCs) were differentiated to neuron, astrocyte, microglial, and endothelial cell fates. Loss of SORL1 leads to alterations in both overlapping and distinct pathways across cell types, with the greatest effects in neurons and astrocytes. SORL1 loss induces a neuron-specific reduction in apolipoprotein E (APOE) and clusterin (CLU) and altered lipid profiles. Analyses of iPSCs derived from a large cohort reveal a neuron-specific association between SORL1, APOE, and CLU levels, a finding validated in postmortem brain. Enhancement of retromer-mediated trafficking rescues tau phenotypes observed in SORL1-null neurons but does not rescue APOE levels. Pathway analyses implicate transforming growth factor ß (TGF-ß)/SMAD signaling in SORL1 function, and modulating SMAD signaling in neurons alters APOE RNA levels in a SORL1-dependent manner. Taken together, these data provide a mechanistic link between strong genetic risk factors for AD.


Assuntos
Doença de Alzheimer , Clusterina , Humanos , Clusterina/genética , Doença de Alzheimer/genética , Neurônios , Processos de Crescimento Celular , Apolipoproteínas E/genética , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras
17.
medRxiv ; 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37398438

RESUMO

Investigating the association of lipidome profiles with central Alzheimer's disease (AD) biomarkers, including amyloid/tau/neurodegeneration (A/T/N), can provide a holistic view between the lipidome and AD. We performed cross-sectional and longitudinal association analysis of serum lipidome profiles with AD biomarkers in the Alzheimer's Disease Neuroimaging Initiative cohort (N=1,395). We identified lipid species, classes, and network modules that were significantly associated with cross-sectional and longitudinal changes of A/T/N biomarkers for AD. Notably, we identified the lysoalkylphosphatidylcholine (LPC(O)) as associated with "A/N" biomarkers at baseline at lipid species, class, and module levels. Also, GM3 ganglioside showed significant association with baseline levels and longitudinal changes of the "N" biomarkers at species and class levels. Our study of circulating lipids and central AD biomarkers enabled identification of lipids that play potential roles in the cascade of AD pathogenesis. Our results suggest dysregulation of lipid metabolic pathways as precursors to AD development and progression.

18.
Biomolecules ; 13(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37371497

RESUMO

The current coronary artery disease (CAD) risk scores for predicting future cardiovascular events rely on well-recognized traditional cardiovascular risk factors derived from a population level but often fail individuals, with up to 25% of first-time heart attack patients having no risk factors. Non-invasive imaging technology can directly measure coronary artery plaque burden. With an advanced lipidomic measurement methodology, for the first time, we aim to identify lipidomic biomarkers to enable intervention before cardiovascular events. With 994 participants from BioHEART-CT Discovery Cohort, we collected clinical data and performed high-performance liquid chromatography with mass spectrometry to determine concentrations of 683 plasma lipid species. Statin-naive participants were selected based on subclinical CAD (sCAD) categories as the analytical cohort (n = 580), with sCAD+ (n = 243) compared to sCAD- (n = 337). Through a machine learning approach, we built a lipid risk score (LRS) and compared the performance of the existing Framingham Risk Score (FRS) in predicting sCAD+. We obtained individual classifiability scores and determined Body Mass Index (BMI) as the modifying variable. FRS and LRS models achieved similar areas under the receiver operating characteristic curve (AUC) in predicting the validation cohort. LRS enhanced the prediction of sCAD+ in the healthy-weight group (BMI < 25 kg/m2), where FRS performed poorly and identified individuals at risk that FRS missed. Lipid features have strong potential as biomarkers to predict CAD plaque burden and can identify residual risk not captured by traditional risk factors/scores. LRS compliments FRS in prediction and has the most significant benefit in healthy-weight individuals.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Placa Aterosclerótica , Humanos , Lipidômica , Angiografia Coronária/métodos , Medição de Risco , Placa Aterosclerótica/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Biomarcadores , Lipídeos
19.
Nat Med ; 29(4): 936-949, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37076741

RESUMO

Autism omics research has historically been reductionist and diagnosis centric, with little attention paid to common co-occurring conditions (for example, sleep and feeding disorders) and the complex interplay between molecular profiles and neurodevelopment, genetics, environmental factors and health. Here we explored the plasma lipidome (783 lipid species) in 765 children (485 diagnosed with autism spectrum disorder (ASD)) within the Australian Autism Biobank. We identified lipids associated with ASD diagnosis (n = 8), sleep disturbances (n = 20) and cognitive function (n = 8) and found that long-chain polyunsaturated fatty acids may causally contribute to sleep disturbances mediated by the FADS gene cluster. We explored the interplay of environmental factors with neurodevelopment and the lipidome, finding that sleep disturbances and unhealthy diet have a convergent lipidome profile (with potential mediation by the microbiome) that is also independently associated with poorer adaptive function. In contrast, ASD lipidome differences were accounted for by dietary differences and sleep disturbances. We identified a large chr19p13.2 copy number variant genetic deletion spanning the LDLR gene and two high-confidence ASD genes (ELAVL3 and SMARCA4) in one child with an ASD diagnosis and widespread low-density lipoprotein-related lipidome derangements. Lipidomics captures the complexity of neurodevelopment, as well as the biological effects of conditions that commonly affect quality of life among autistic people.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtornos do Sono-Vigília , Criança , Humanos , Transtorno Autístico/genética , Transtorno do Espectro Autista/genética , Lipidômica , Qualidade de Vida , Austrália/epidemiologia , Transtornos do Sono-Vigília/genética , Transtornos do Sono-Vigília/complicações , DNA Helicases , Proteínas Nucleares , Fatores de Transcrição
20.
Clin Transl Immunology ; 12(4): e1446, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091327

RESUMO

Objectives: The leading cause of mortality in patients with rheumatoid arthritis is atherosclerotic cardiovascular disease (CVD). We have shown that murine arthritis impairs atherosclerotic lesion regression, because of cellular cholesterol efflux defects in haematopoietic stem and progenitor cells (HSPCs), causing monocytosis and impaired atherosclerotic regression. Therefore, we hypothesised that improving cholesterol efflux using a Liver X Receptor (LXR) agonist would improve cholesterol efflux and improve atherosclerotic lesion regression in arthritis. Methods: Ldlr -/- mice were fed a western-type diet for 14 weeks to initiate atherogenesis, then switched to a chow diet to induce lesion regression and divided into three groups; (1) control, (2) K/BxN serum transfer inflammatory arthritis (K/BxN) or (3) K/BxN arthritis and LXR agonist T0901317 daily for 2 weeks. Results: LXR activation during murine inflammatory arthritis completely restored atherosclerotic lesion regression in arthritic mice, evidenced by reduced lesion size, macrophage abundance and lipid content. Mechanistically, serum from arthritic mice promoted foam cell formation, demonstrated by increased cellular lipid accumulation in macrophages and paralleled by a reduction in mRNA of the cholesterol efflux transporters Abca1, Abcg1 and Apoe. T0901317 reduced lipid loading and increased Abca1 and Abcg1 expression in macrophages exposed to arthritic serum and increased ABCA1 levels in atherosclerotic lesions of arthritic mice. Moreover, arthritic clinical score was also attenuated with T0901317. Conclusion: Taken together, we show that the LXR agonist T0901317 rescues impaired atherosclerotic lesion regression in murine arthritis because of enhanced cholesterol efflux transporter expression and reduced foam cell development in atherosclerotic lesions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...